

8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE Firenze - Auditorium CTO - A.O.U. Careggi, 22-23 giugno 2023

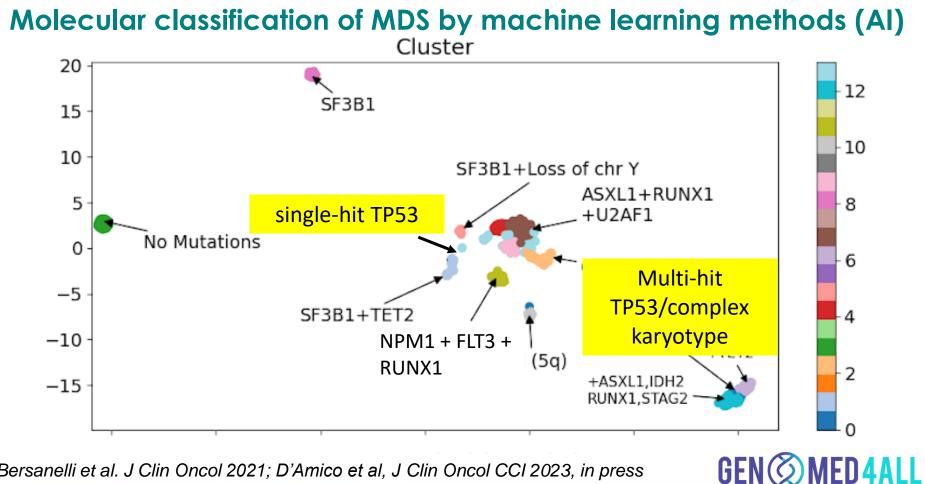
Applicazioni dell'Intelligenza artificiale alla stratificazione delle MDS

Matteo G Della Porta

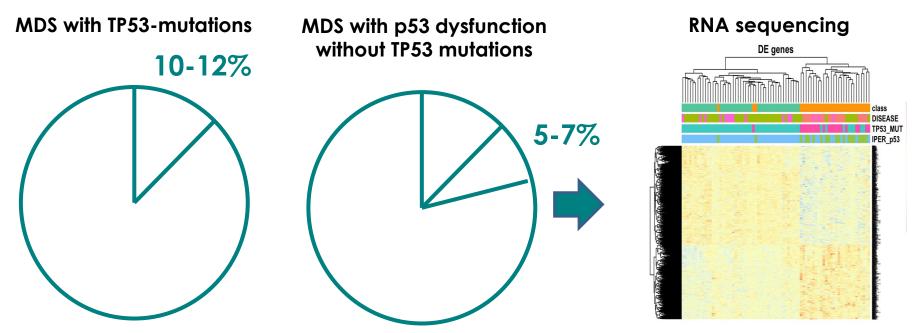
Disclosures of MATTEO G DELLA PORTA

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other

Artificial Intelligenece (AI) for precision medicine

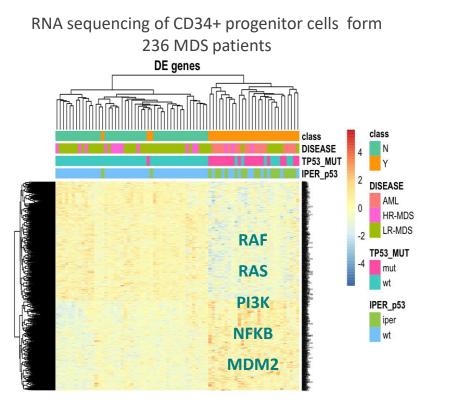

1- Machine Learning

2- Generative AI



Bersanelli et al. J Clin Oncol 2021; D'Amico et al, J Clin Oncol CCI 2023, in press

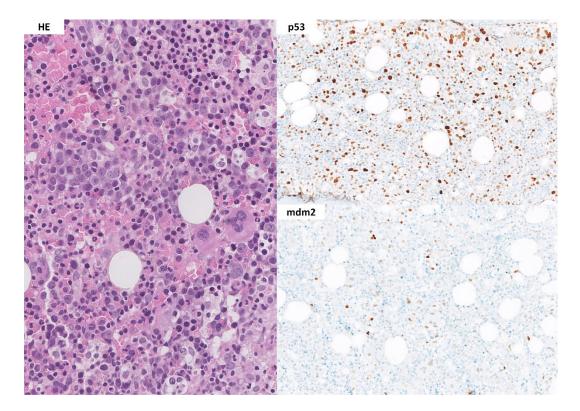
A new category of high-risk MDS is defined according to p53 dysfunction


SHAP (Shapley_Additive_Explanations) was used to explain the classification model by computing the contribution of each feature

Bersanelli et al. J Clin Oncol 2021 Riva et al. Blood 2022;140:4001–4; Zampini et al, manuscript in preparation

HUMANITAS

A new category of high-risk MDS is defined according to p53 dysfunction


Evidence of impaired T cell and NK maturation and function in MDS with p53 dysfunction

- Immune checkpoint overexpression (PD-L1) at the stem cell level
- » Reduced numbers of cytotoxic T cells
- Expansion of myeloid-derived suppressor cells (MDSCs)
- » Expansion of regulatory T cells (Tregs).
- » Impaired NK maturation and function

Sallman DA Blood (2020) 136 (24): 2812–2823

Riva et al. Blood 2022;140:4001-4; Zampini et al, manuscript in preparation

A new category of high-risk MDS is defined according to p53 dysfunction

Riva et al. Blood 2022;140:4001–4; Zampini et al, manuscript in preparation

2021 WHO guidance on ethics and governance of AI for health

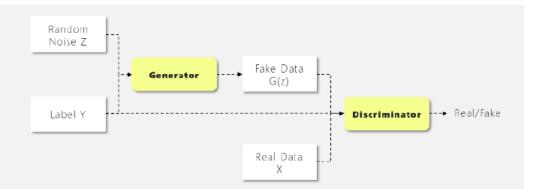
We have to address three important topics, deemed as essential for a **right deployment of AI in hematology**:

- **Transparency of models.** We have to provide a good understanding of the models (interpretability and explainability)
- **Reliability of models.** The main vulnerabilities of AI models are related to lack of generalizability. Therefore, extensive, independent validation of generated AI-models is required.
- **Protection of data and data sharing**. Innovative technologies such as federated learning procedures for data collection and analysis (without moving sensitive medical data from their original locations) are required to facilitate clinical implementability of AI solutions
 - 1. The World Health Organization. 2021 WHO guidance on ethics and governance of artificial intelligence for health. <u>https://www.who.int/publications/i/item/9789240029200</u>

Artificial Intelligenece (AI) for precision medicine

1- Machine Learning

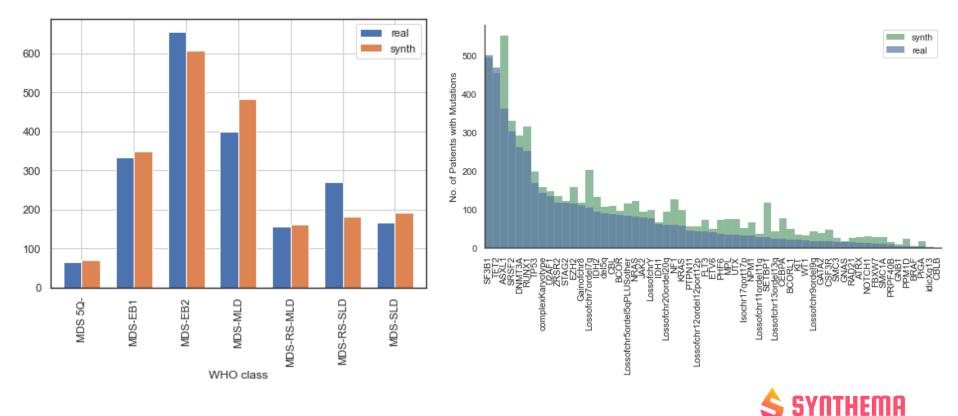
2- Generative AI


Generation of Synthetic Data to accelerate Research & Development in MDS

- In MDS the first evidence of recurrent somatic mutations in splicing-related genes was published in 2011 and only 10 years later large patient populations (n>2,000) with comprehensive clinical and molecular information were available to test clinical significance and implementability of genomic screening
- The development of innovative data-driven digital health products and services, in fact, is currently slowed due to limited access to / availability of data. Additional challenges in health data include harmonization problems and data privacy (GDPR)
- Synthetic data are artificial data generated by an algorithm trained to learn all the essential characteristics of a real dataset. The new data are neither a copy nor a representation of the real data. Since they are not real data, they are not regulated by particular limitations so they can be easily accessed and shared.

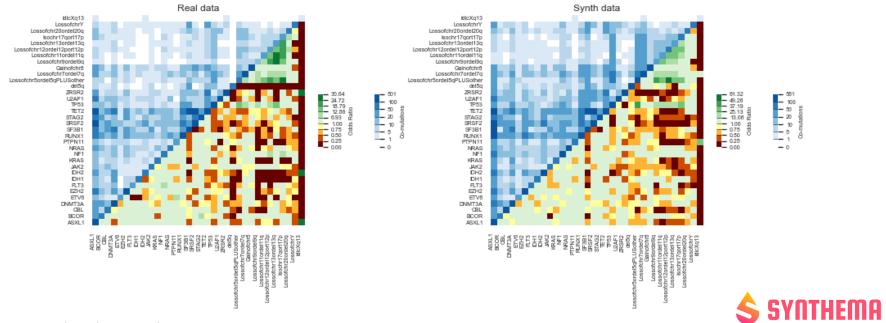
Generation of synthetic data to accelerate Research & Development in MDS

• Synthetic data can be generated by using neural networks (Generative Adversarial Networks, GAN).


Figure 2 Conditional Generative Adversarial Networks architecture

Possible applications

- Data sharing (GDPR)
- Classes balance and resolution of missing information
- Data augmentation for learning/ validation purpose
- Generation of new evidence



Synthetic vs. Real Data: comparison of clinical and molecular features

Synthetic vs. Real Data: pairwise association among genes and cytogenetic abnormalities

Pairwise associations among genes and cytogenetic abnormalities

Synthetic vs. Real Data: survival

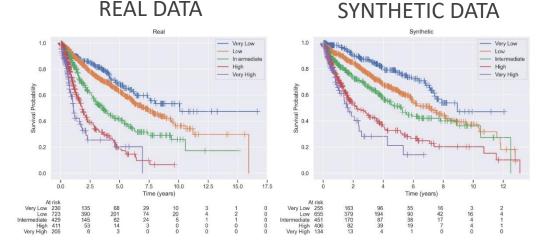
COX models (overall survival)

Probability of OS stratified by IPSS-R

Real data:

Global Concordance: 0.779; Std.err:0.013

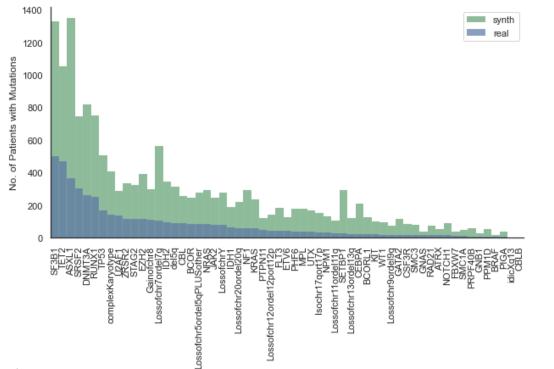
Partial Concordance of risk components:

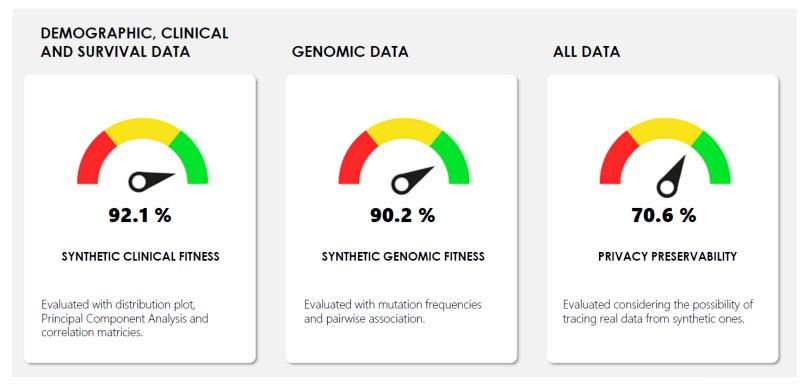

	Clinical	CNA	Demographics	Genetics
concordant	0.711	0.569	0.630	0.782
std(c-d)	0.013	0.011	0.013	0.013

Synthetic data:

Global Concordance: 0.822; Std.err:0.013

Partial Concordance of risk components:


	Clinical	CNA	Demographics	Genetics
concordant	0.732	0.536	0.646	0.746
std(c-d)	0.013	0.011	0.013	0.013


Synthetic vs. Real Data: data augmentation

Data augmentation: form 2043 to 5000 patients

Performance of Synthetic Data

Generation of Synthetic Data to accelerate translational research in Hematology

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Somatic SF3B1 Mutation in Myelodysplasia with Ring Sideroblasts

E. Papaemmanuil, M. Cazzola, J. Boultwood, L. Malcovati, P. Vyas, D. Bowen,
A. Pellagatti, J.S. Wainscoat, E. Hellstrom-Lindberg, C. Gambacorti-Passerini,
A.L. Godfrey, I. Rapado, A. Cvejic, R. Rance, C. McGee, P. Ellis, L.J. Mudie,
P.J. Stephens, S. McLaren, C.E. Massie, P.S. Tarpey, I. Varela, S. Nik-Zainal,
H.R. Davies, A. Shlien, D. Jones, K. Raine, J. Hinton, A.P. Butler, J.W. Teague,
E.J. Baxter, J. Score, A. Galli, M.G. Della Porta, E. Travaglino, M. Groves, S. Tauro,
N.C. Munshi, K.C. Anderson, A. El-Naggar, A. Fischer, V. Mustonen, A.J. Warren,
N.C.P. Cross, A.R. Green, P.A. Futreal, M.R. Stratton, and P.J. Campbell
for the Chronic Myeloid Disorders Working Group of the International
Cancer Genome Consortium

Published June 12, 2022 NEJM Evid 2022; 1 (7) DOI: 10.1056/EVIDoa2200008

ORIGINAL ARTICLE

Molecular International Prognostic Scoring System for Myelodysplastic Syndromes

Elsa Bernard, Ph.D.,¹ Heinz Tuechler, Peter L. Greenberg, M.D.,² Robert P. Hasserjian, M.D.,³ Juan E. Arango Ossa, M.S.,¹ Yasuhito Nannya, M.D., Ph.D.,^{4,5} Sean M. Devlin, Ph.D.,¹ Maria Creignou, M.D.,⁶ Philippe Pinel, M.S.,¹ Lily Monnier, M.S.,¹ Gunes Gundern, Ph.D.,¹ Juan S. Medina-Martinez, M.S.,¹ Dylan Domenico, B.S.,¹ Martin Jädersten, M.D., Ph.D.,⁶ Ulrich Germing, M.D.,⁷ Guillermo Sanz, M.D., Ph.D.,^{8,9,10} Arjan A. van de Loosdrecht, M.D., Ph.D.,¹¹ Olivier Kosmider, M.D., Ph.D., ¹² Matilde Y. Follo, Ph.D., ¹³ Felicitas Thol, M.D., ¹⁴ Lurdes Zamora, Ph.D., ¹⁵ Ronald F. Pinheiro, Ph.D.,¹⁶ Andrea Pellagatti, Ph.D.,¹⁷ Harold K. Elias, M.D.,¹⁸ Detlef Haase, M.D., Ph.D.,¹⁹ Christina Ganster, Ph.D.,¹⁹ Lionel Ades, M.D., Ph.D.,²⁰ Magnus Tobiasson, M.D., Ph.D.,⁶ Laura Palomo, Ph.D.,²¹ Matteo Giovanni Della Porta, M.D.,²² Akifumi Takaori-Kondo, M.D., Ph.D.,²³ Takavuki Ishikawa, M.D., Ph.D.,²⁴ Shigeru Chiba, M.D., Ph.D., 25 Senji Kasahara, M.D., Ph.D., 26 Yasushi Miyazaki, M.D., Ph.D., 27 Agnes Viale, Ph.D., 28 Kety Huberman, B.S.,²⁸ Pierre Fenaux, M.D., Ph.D.,²⁰ Monika Belickova, Ph.D.,²⁹ Michael R. Savona, M.D.,³⁰ Virginia M, Klimek, M.D.,¹⁸ Fabio P, S, Santos, M.D., Ph.D.,³¹ Jacqueline Boultwood, Ph.D.,¹⁷ Ioannis Kotsianidis, M.D., Ph.D., 32 Valeria Santini, M.D., 33 Francesc Solé, Ph.D., 21 Uwe Platzbecker, M.D., 34 Michael Heuser, M.D., ¹⁴ Peter Valent, M.D., ^{35,36} Kazuma Ohyashiki, M.D., Ph.D., ³⁷ Carlo Finelli, M.D., ³⁸ Maria Teresa Voso, M.D., 39 Lee-Yung Shih, M.S., 40 Michaela Fontenay, M.D., Ph.D., 12 Joop H. Jansen, Ph.D., 41 José Cervera, M.D., Ph.D., ⁴² Norbert Gattermann, M.D., ⁷ Benjamin L. Ebert, M.D., Ph.D., ⁴³ Rafael Bejar, M.D., Ph.D., ⁴⁴ Luca Malcovati, M.D.,⁴⁵ Mario Cazzola, M.D.,⁴⁵ Seishi Ogawa, M.D., Ph.D.,^{4,46,47} Eva Hellström-Lindberg, M.D., Ph.D.,⁶ and Elli Papaemmanuil, Ph.D.¹

6 patients 2011

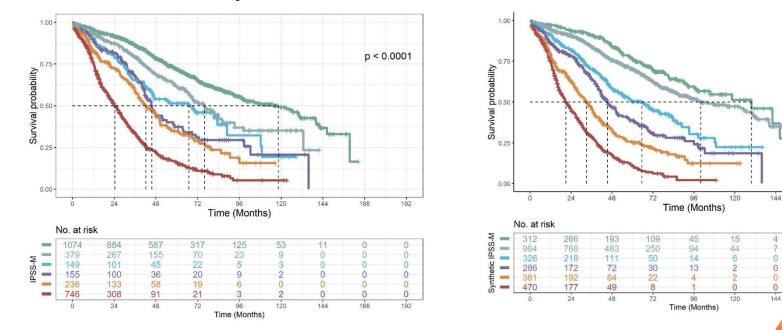
8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE

Generation of Synthetic Data to accelerate translational research in Hematology

IPSS-M (real data, 2022)

Syntetic IPSS-M (synthetic data, 2013)

p < 0.0001


168

169

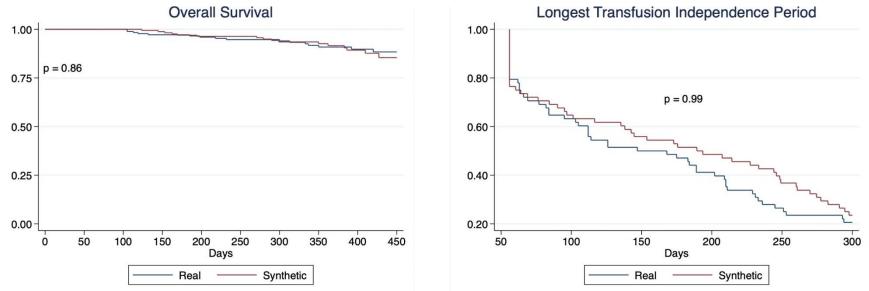
192

192

HEMA

Generation of Synthetic Data to accelerate clinical research in Hematology

Comparing endpoints of clinical trials using **real** and **synthetic** control arms. Real-world efficacy and safety of luspatercept in adult patients with transfusion-dependent anemia due to very low-, low and intermediate-risk myelodysplastic syndrome (MDS) with ring sideroblasts, who had an unsatisfactory response to or are ineligible for erythropoietin-based therapy: a multicenter study by Fondazione Italiana Sindromi Mielodisplastiche (FISIM)


Primary endpoint

	Real data	Synthetic data	Pvalue
RBC-TI>=8 weeks 1-24	56 (31,5)	56 (31,5)	1.0
ongest Transfusion Independence Period (weeks), median (range)	195 (56-490)	191 (56-490)	0.34
RBC-TI>=8 weeks 1-48	68 (38,2)	61 (34,3)	0.50
RBC-TI>=12 weeks 1-24	36 (20,2)	41 (23,0)	0.60
RBC-TI>=12 weeks 1-48	51 (28,7)	46 (25,8)	0.63
Reduction>= 4 RBC	62 (34,8)	63 (35,4)	1.0
Reduction>=50%	77 (43,3)	72 (40,4)	0.66
AML Evolution	4 (2,2)	6 (3,4)	0.75
Discontinued patients	74 (41,6)	82 (46,1)	0.64

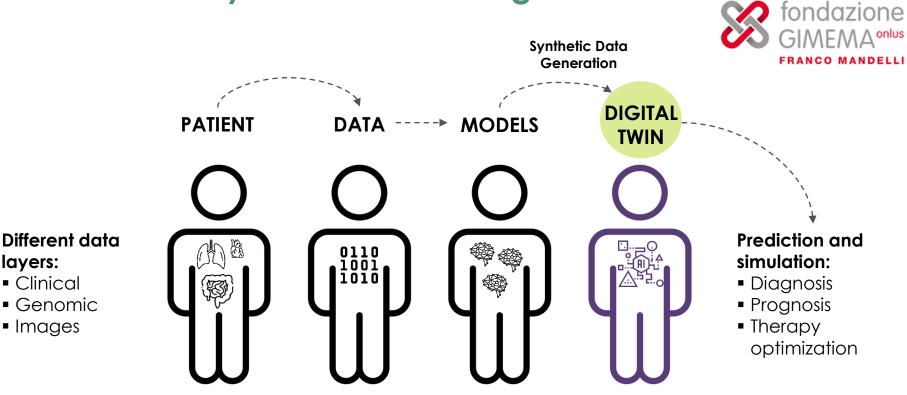
D'Amico S et al, J Clin Oncol CCI 2023, in press

Lanino L et al, Am J Hematol 2023, in press

Generation of Synthetic Data to accelerate clinical research in Hematology

Comparing endpoints of clinical trials using **real** and **synthetic** control arms. Real-world efficacy and safety of luspatercept in adult patients with transfusion-dependent anemia due to very low-, low and intermediate-risk myelodysplastic syndrome (MDS) with ring sideroblasts, who had an unsatisfactory response to or are ineligible for erythropoietin-based therapy: a multicenter study by Fondazione Italiana Sindromi Mielodisplastiche (FISIM)

'NTHEMA


layers:

Clinical

Images

Genomic

From Synthetic data to Digital Twins

8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE

CENTER FOR ACCELERATING LEUKEMIA/LYMPHOMA RESEARCH

Artificial Intelligence and real world data analysis to improve patient care and advance medical research in hematology

Al people

- Saverio D'Amico
- Elisabetta Sauta
- Gianluca Asti
- Victor Savevski
- Gastone Castellani

Clinical team

- Luca Lanino
- Giulia Maggioni
- Erica Travaglino
- Alessia Campagna
- Marta Ubezio
- Antonio Russo
- Gabriele Todisco

GEN ØMED 4 ALL

